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Abstract. From time to time modifications of Einstein’s general theory of relativity have 
been considered the central feature of which, on a formal level, is the appearance in place 
of the Einstein Lagrangian R of a more general Lagrangian L. On physical grounds one 
will require L to differ from R only by terms whose presence has no substantial observa- 
tional consequences under ‘ordinary‘ conditions. No non-trivial exact vacuum solutions 
of the equations generated by any such Lagrangian appear to be known, the Schwarzschild 
metric being regarded as a ‘trivial solution’ in this context. Here I consider pp waves, first 
as exact solutions of the vacuum equations generated by a family of inhomogeneous 
quadratic Lagrangians L*. Thereafter a much wider class of Lagrangians is contemplated, 
but the greater generality of this is only apparent since all such Lagrangians in effect 
reduce to L*. 

1. Introduction 

Since the early days of general relativity theory alternative theories have been proposed 
for various reasons (see e.g. Stelle 1978) in which the energy-momentum tensor is 
equated to the functional derivative of an invariant of the Riemann tensor other than 
the scalar curvature R, the latter choice being central to Einstein’s theory. I shall call 
any such Lagrangian L* ‘nonlinear’ since it is not a linear function of the components 
of the Riemann tensor. In the context of investigations devoted to finding exact 
solutions of the vacuum field equations generated by some given L”, attention has 
hitherto been confined almost entirely to the class of homogeneous quadratic 
invariants. The members of this class are, in the first instance, linear sums with constant 
coefficients of the four ‘elementary quadratic invariants’ K1 := R 2 ,  K2 := Ri,Rii, 
K3 := RijklR iik’,  K4 := R &lR j i k ‘ .  (It is taken for granted that the Riemann space is four 
dimensional.) Since the functional derivatives of K1 -4K2 + K3 and of K4 vanish 
identically, one is left in effect with the two-parameter family 

~ * ( p ,  = PR + y ~ i j ~  ii (p, y =constant). (1.1) 
As far as I am aware almost all the known exact solutions of the vacuum equations 
SL*(p, y)/dgij =: Pi’@, y )  = 0 are not of any genuine interest: when y = 0 the equations 
are satisfied by any Va whose scalar curvature is constant; whatever the values of a: 
and p may be, they are satisfied when the V4 is an arbitrary Einstein space; when 
3p  + y = 0 they are satisfied by any V4 conformal to an arbitrary Einstein space 
(Buchdahl 1953). Such solutions are evidently either too general, or else do not go 
beyond those familiar from Einstein’s theory. The only known vacuum solution to 
which this remark does not apply belongs to L*( l ,  0) under the assumption that R is 
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not constant (Buchdahl 1978). Information is also available about the question of 
the existence of static, regular, asymptotically flat solutions of P ” ( p ,  y )  = 0 (Buchdahl 
1973). However, all such results are largely irrelevant: homogeneous quadratic 
Lagrangians must be rejected because they do not lead to acceptable theories of 
gravitation (Pechlaner and Sex1 1966, Folomeshkin 1971, Havas 1977, Stelle 1978). 

Granted, then, that Lagrangians L* more general than (1.1) need to be considered, 
I know of only two relevant results which are about exact solutions of the vacuum 
equations. The first is this: when L* is an invariant of the Ricci tensor and L*(-g)”2 
is scale invariant, i.e. invariant under the substitution gij + vgii (U = constant), the 
vacuum equations are satisfied by an arbitrary Einstein space (Buchdahl 1948a). The 
second concerns the exceptional Lagrangian 

L* = R  -(XI -4K2)1’2. 

This is remarkable in  that whereas the vacuum field equations which it generates are 
satisfied by an arbitrary Einstein space, they are also satisfied by a V,  which is 
reciprocal to an arbitrary static Einstein space (Buchdahl 1970a). (The term 
‘reciprocal’ is here used in the sense in which it appears in the context of what was 
historically the first of the ‘generation methods’ (Buchdahl 1954).) In the first case, 
then, the known vacuum solutions once again do  not go beyond those of Einstein’s 
theory. In the case of (1.2) they do, to the extent that a space reciprocal to a static, 
non-special Einstein space is not an Einstein space. Nevertheless, I believe that (1.2), 
like all the other Lagrangians mentioned so far, should be rejected. Einstein’s 
Lagrangian R leads to a theory no predictions of which are in clear disagreement 
with any observational results available at present. Under the ‘ordinary’ physical 
circumstances to which these relate any alternative theory, to the extent that it is 
based on similar principles (Buchdahl 198 l), must therefore ‘resemble’ Einstein’s very 
closely: to all intents and purposes its Lagrangian L* must, loosely speaking, differ 
only insignificantly from R. In other words, writing L* =: R + A ,  the effects of those 
terms of the field equations which are generated by A must, under ‘ordinary’ circum- 
stances, be entirely masked by the effects of terms generated by R. As far as exact 
solutions are concerned, Lagrangians of this more general kind have only occurred 
in the context of cosmological theory (Buchdahl 1970b). In general, however, one 
will wish to confine oneself in the first instance to vacuum solutions, not least to avoid 
the difficulties engendered by having to take into account the limitations implicit in 
the physical nature of possible sources; but no such exact vacuum solutions seem to 
be available. 

Reflect now that the relatively simple state of affairs which obtains in the context 
of the cosmological solution referred to a moment ago is related to the fact that the 
assumed generic form of the metric-the Robertson-Walker metric-contains only a 
single function of one variable to be determined by the field equations. This suggests 
that when seeking vacuum solutions one should choose a generic form of the metric 
which satisfies two requirements: (i) it shall again involve only a single function to be 
determined by the field equations and (ii) the algebraic invariants of the Riemann 
tensor, evaluated for this generic metric, shall have ‘as simple a form as possible’. 
The meaning of the second demand is rather nebulous, but one might not unreasonably 
take an invariant to have the simplest possible form when it vanishes identically. The 
specific choice of the generic pp-wave metric (Kramer et a1 1980) 

-ds = dx + d y + 2H (x, y, U ) du + 2 du dv 



Nonlinear Lagrangians and p p  waves 1443 

so suggests itself, for it contains only the one  function H t o  be determined whilst all 
algebraic invariants of the Riemann tensor vanish, whatever the form of H ; as do, in 
fact, all invariants which can be formed by transvection from the metric tensor, the 
Riemann tensor and its covariant derivatives (Jordan et a1 1960) .  

Next, a Lagrangian needs to  be chosen. With tradition in mind, a first choice will 
be the family of inhomogeneous quadratic Lagrangians 

( 1 . 4 )  

where A ,  q, p, y are constants, with q = 0 or  1 .  (The possibility of q having the value 
0 is retained for didactic reasons.) Once the field equations generated by ( 1 . 4 )  and 
their solutions have been considered it is a straightforward problem to  deal with a 
much wider class of Lagrangian along similar lines; but it turns out that all such 
Lagrangians are in effect no more general than ( 1 . 4 ) .  

L*(A, q, p, y )  = A  +qR + p R 2  + -yR,,R", 

2. Inhomogeneous quadratic Lagrangians 

It is helpful to have some of the explicit concomitants of ( 1 . 3 )  available. To this end 
write (x, y,  U ,  U )  = (x , x , x , x ). Then 1 2 3 4  

g33 = 2H,  ( 2 . 1 )  

r144 = -fix, r244 = -H,, r314 = r 41 = H,, r324 = r 4 2 = H y ,  r344 = H,, ( 2 . 2 )  

g" = g22 = g34 - g  - 43 = - 1 ,  

and all other components of g"  vanish. The  Christoffel symbols are 
3 3 

subscripts x, y, U ,  U denoting partial derivatives. The  covariant Riemann tensor has 
only three constituents, i.e. essentially distinct components which d o  not necessarily 
vanish: 

R 1414 = H x x ,  R1424 =H.x,, R2424 = Hyya (2 .3 )  
All other components either vanish or  are related to  (2.3) through the symmetries of 
Rllkl. From ( 2 . 1 ) ,  ( 2 . 3 )  

R44= H,, +H,\ =: AH, R =0 ,  (2 .4a ,b )  

whilst all other components of RI, vanish. The  Weyl tensor has two constituents: 

c l 4 1 4  = ! i ( H x x  -H,> 1, c l 4 2 4  = K,. ( 2 . 5 )  
Now, when forming the functional derivative PI' of the Lagrangian L* given by 

( 1 . 4 ) ,  the term pR2  will contribute nothing because of ( 2 . 4 6 ) .  Taking into account 
that R,,R" = 0 also, one finds that 

( 2 . 6 )  
The last term on the right vanishes since R 33  is the only non-zero component of R mn 

and R,33, = 0. To deal with OR,, := gmnR,,,mn consider first RI,,,. Bearing in mind 
that only R 4 4 f 0  whilst r4pq = 0, one  has R,,., = R,,,,. Then by the same token 
Rij,mn = RI,,,, - rSmnRl,,r which always vanishes except when i = j = 4 .  Transvection 
with g"" now leads to the result 

OR44=-AR44, ( 2 . 7 )  
whilst all other JR,, vanish. The  equations PI, = 0 now show that unless A = 0 one 

Pij =$Agij -qRij +y(URi, -2RtmnjR'""). 
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has an inconsistency. Further, since all Pi, except P44 vanish identically, the field 
equations reduce to 

v A H  +yAAH =3 0, (2.8) 

granted that A has been taken to be zero from the outset. This equation is equivalent 
to 

y A H + q H = @ ,  (2.9) 

where @ is an arbitrary harmonic function of x and y which also depends arbitrarily 
on U. 

If x =: r cos 8, y =: r sin 8 and v / y  =: K , where K~ can be negative, the solution 
of (2.8) may be exhibited in the form 

2 

X 

[%o(Kr)+aolnr+bo]+ 1 [~n(Kr)+a , r"+bnr-" ]e i"B 
n = l  

where the a, and b, are arbitrary complex 'constants' and %,,,(Kr) is a cylinder function, 
i.e. a linear sum, with arbitrary complex 'constant' coefficients of two linearly indepen- 
dent solutions of Bessel's equation of order m ; 'constancy' of coefficients meaning 
that they depend on U alone. 

As a special case, choose the various 'constants' in (2.10) so that H consists simply 
of the first term of the sum and suppose that k 2  := - K  > 0. Then, with kr =: p, 2 

H =Re{[aKl(p)+bl l (p)+cp +dp-l]e"}). 

Finally choosing d = - a / k ,  b = c = 0, this becomes 

H = [ A ( u )  COS 8 + B ( u )  sin 81[Kl(p)-p-'l, 

where A ( u )  and B ( u )  are arbitrary real functions of U alone. Since 

(2.11) 

H is everywhere finite in this case. (The derivatives with respect to x and y of h ( p ) ,  
however, diverge as p + 0.) This situation may be contrasted with that which obtains 
when y = 0 or 77 = 0: for general values of 0 and U ,  H then necessarily diverges as 
p + 0 or p -, CO or both. 

3. Elementary invariants of degree m 

It will be convenient to adopt the following definition: an invariant K"' is an 
elementary invariant of degree m if it is an invariant transvection of m components 
of the Riemann tensor with 2m components of the metric tensor. Thus, generically. 

m 

r = l  
(3.1) 

where the set of superscripts differs from the set of subscripts only with respect to 
order. Now write 

Z""'k' := aK"'/aRIlk,, (3.2) 
where in forming the derivative on the right symmetries of Rlrkr are to be ignored. 
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Thus, if the Riemann tensor be varied, the metric being kept fixed, SK'" will consist 
of m terms generically all alike and therefore 

(3.3) 

where each of the m sets of 4m superscripts in the m terms of the sum is some 
permutation of mlnl . . . p m - 1 9 m - l i j k l .  

Let Tim) stand for the sth term of the sum on the right of (3.3). Then, bearing 
(2.3) in mind, every non-vanishing factor can only be of the kind fRdApB,, 
where the range of upper case indices is 1, 2. Since all subscripts are dummy indices, 
each subscript 4 must be paired with a factor g 4 3 ,  since g 4 b  = 0 unless b = 3.  T:m) 
thus contains a factor (g43)2m-2 .  The superscript 3 occurs 2m - 2  times in this, so 
that, since the valence of Z'jk' is 4, at most four of these superscripts can be free. 
Thus there are at least 2m - 6  dummy superscripts which take the (only possible) 
value 3. All these must be paired with subscripts of the factors R4ApB, which take 
the value 3, but there are no such subscripts. It follows that T:m' = 0 when m > 3 ,  i.e. 

when m > 3. (3.4) 
Since the cases m = 1 and m = 2 were in effect disposed of in § 2, it remains to examine 
the case m = 3. It is evident from the argument leading up to (3.3) that Ziik' can have 
at most one component which does not necessarily vanish, namely z ~ ~ ~ ~ .  

When one factor g "  is omitted from the product on the right of (3.1)-it may be 
taken to be gUmUm without loss of generality-one has a tensor of valence 2 ,  Yumum, say. 
Since there are m factors R. . . . ,  there are 2m subscripts 4, of which at most two can 
be free. Thus there are at least 2m - 2 dummy subscripts 4 and Yumum must therefore 
contain a factor (gd3)'"-' .  In this each 3 is the only surviving value of a dummy 
index; but the corresponding subscript cannot have this value in a non-vanishing 
component of the Riemann tensor. It follows that 

ZW = 0 

Yjl = 0 when m > 1. (3.5) 
Finally the functional derivative SK '" /6g i j  is to be calculated. It is convenient 

temporarily to suppress the index ( m ) ,  the degree of K so being left understood. 
Then under a variation of the metric tensor 

6 I K ( - g )  d x = ( - g ) ' " S K  d4x 
l i 2  I 

since K vanishes. From (3.11, if 2" := a K / a g l j  (Rzjkl being kept fixed in forming this 
derivative) one has 

6K = z 'lki6Rijki i- z "Sgj, 

(3.6) - - -Z,'k'6rPji,;[ + (R'pk[Zipk' fZi')6gij, 

granted that Z'Ik' is taken as skew-symmetric in i, j and in k,  1. Thus 

SK = gpiZiik',18rP,k + (R'pk[zipk' +z")6g i j  +divergence. (3.7) 

Since the variations in (3 .6)  are supposed to vanish on the boundary, the divergence 
in (3.7) may be rejected. 

Now, 2'' consists of a sum of terms each of which has a factor Y,,, U, t' being 
generic indices. By (3 .5) ,Zi '  therefore vanishes when m > 1. As regards the remaining 
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terms of (3.7), these vanish when m > 3 by virtue of (3.4). When m = 3 there can be 
only one component of Zi'k';l which does not necessarily vanish, namely z ~ ~ ~ ~ ; ~ .  This, 
however, vanishes because of (2.2) and because K does not depend on x 3 .  In short 

SK '" /Sg i j  = 0 when m > 2. (3.8) 

It may be remarked that (3.8) also follows directly, without explicit reference to 
Y,,, from a general formula for the functional derivatives of invariants of the Riemann 
tensor (Buchdahl 1948b). 

4. A general class of Lagrangians 

It is now a straightforward matter to go on to a much wider class of Lagrangians than 
that considered in lj 2, It consists of Lagrangians which are functions of N elementary 
invariants: occasionally abbreviating KL") to z,, 

L = f ( z 1 , z 2 , .  . . , ZN), (4.1) 

where f can be any function of the z ,  which is C' in a neighbourhood of the origin 
and vanishes there: 

(4.2) 

In the case of (1.4) it is this condition which requires the vanishing of A. Quite 
generally, if (4.2) is not satisfied the equations S L / S g i j  = 0 lead to an inconsistency. 

The various invariants which enter into (4.1) may be mutually dependent-indeed, 
when N > 14 they will certainly be so-but this is of no consequence here. 

Now write f a  for the derivative af/az,, taken at the origin. Then, since all the z ,  
vanish here, 

f ( O , O ,  , . * , 0) = 0. 

S I  L(-g)"* d4x = I ( -g)"*SL d4x = ( -g ) ' / *  1 f a&,  d4x, I ,  
which shows that 

However, because of (3.8), the only terms of the sum which survive are those which 
have ma = 1 or 2; and if these are actually to be present one must require the derivatives 
f a  in question to be non-zero. In short, in place of the Lagrangian (4.1) one is effectively 
left with the class of inhomogeneous quadratic Lagrangians already dealt with in 5 2. 
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